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Introduction
.1

A common parameter for describing the accuracy of a weapon is the circular

probable error, generally referred to as CEP. CEP is simply the bivariate analog

of the probable error of a single variable and measures the radius of a mean

centered circle which includes 50% of the bivariate probability mass. In the case

of circular normal errors where the error variances are the same in both directions,

CEP can be expressed in terms of the common standard deviation, and estimators are

easily formulated and compared. In the case of elliptical normal errors, CEP can-

not be expressed in closed form, and hence, estimators are less easily formulated.

The problem addressed herein is the comparison of CEP estimators for the elliptical

case based on some of the commonly used CEP approximations.

It will be instructive to first review the case of circular normal errors.

In general, it will be assumed that the errors in the X and Y directions are

2 2independent with mean zero and variances a x and ayv, respectively, Under the
cirula nrma as~ntio, 2 2 2

circular normal assption, a = and the bivariate distribution of

errors is given by

f(xy) e-(x2+y)/ 2 2 -2, < x,y< . (i)
2Tro
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The distribution of R (X2 + Y2)½ is easily derived and found to be

g9(r) =r e-r 2/ 2a2 > O. (2)
ca

This is the well known Rayleigh distribution with cumulative distribution

function

r2 t2c2P(R < r) = C(r) -- 1-er22. 3

By definition, G (CEP) S., and the solution of equation (3) yields the well-
C

knotn express ion

CEP [-2Zn (.50)Y' a 1.1774a . (4)

Four estimators for CEP in the circular case were formulated and compared by

Noranda (1959).

Consider now the case of elliptical normalerrors. Here the variances are

unequal, and the bivariate distribution of errors is given by

fE(xy) 2na e )2  y-2, - < x,y < (S)
x y

For this case, the distribution of the radial error R was derived by Chew and

Boyce (1961) and has form

2

g,(r) r e -a r (b r 2) (6)
x y

where

02 +a2 2 2
a Y x b) ' {Z x~
(2a aY) (2a0
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and I0 is the modified Bessel function of the first kind and zero order, i.e.,

Tr

Io(X)-- ex Cosd.

The cumulative distribution function for R is denoted by

r

P(R < r) = GE(r) = f gE(t) dt, (7)
0

but it cannot be expressed in closed form. Hence, the radius of the 50% circle

for the elliptical case cannot be expressed by a simple formula as it was in the

circular case. One has to solve GE(CEP) = .5 by numerical methods or by referring

to tables prepared by Hlarter (1960), DiDonato and Jarnagin (1962), and others. To

avoid L•ing these tables or numerical procedures for CEP evaluation, a number of

approximation, have been developed over the years. Five of these approximations

have been chosen for examination. They are designated below as CEP 1 through CEPS

+ CT½ 8
CEP1 1.1774 (O ) (8)

a+ 2)2
(02 4. a

2) + 5 2,

4 4

x *ly
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CEP 4  .565 ammx + .612 amin a.in/amax t .25 (11)

.667 amax + .206 1 min °min/%ax < .25

CEPI and CGEP 2 were taken from Groves (1961), CEP 3 was established by Grubbs (1964),

CEP 4 is a piece-wise linear combination of the standard deviations, and CEP 5 was
also established by Grubbs (1964) using a Wilson-Hilferty transformation of the

chi-square in CEP 3. Plots of each approximation versus the true CEP as a function

omii/ max are shown in Figu res 1 through 5. Th•ese give a fairly good indication

of how well each performs. It is seen that CEP1 deteriorates rapidly as we departj

from the circular case (for which CEP'1 degenerates to 1.1774o), CEP 2 is reasonably

good if the ratio Omin/amax is not less than about .2, CEP 3 appears good for all

Ij

ratios, and CEP4 and CEP 5 appear good to a lesser extent for all ratios.

If these approximations were used on astarox iations for assumed values

of the error variances (as one does in wargaming and round requirement studies),

then there would be no estimation problem. However, in many cases, weapons

analysts are using estimates of the variances in these approximations (based on

sample data) to form estimates of CEP. Hence, the problem now becoEPs an estima-

tion problem instead of an approximation problem. In particular, the problem

addressed in this paper is that of comparing the five estimators for CEP formed

by replacing the population variances in equations (8) through (12) with sample
variances d 2a X/n and o2 r Ye/n. (In these expressions, Xi and are the

recorded errors in the X and Y directions, respectively, for the ith impact and

n is the number of sample impacts.) These estimators wii be referred to as

CEP1 through CEP 5 in the discussion which follows.

S312



Methodology

Measures of comparison employed in this study were the mean squared error

(NBE), expected confidence interval length, and confidence interval confidence.

With regard to the former, the MSE of an estimator e for a parameter 0 is defined

in the ustial sense, i.e.,

A 2 V 2 2
-SE(o) E -e --) ve) + B()

where f, represents expectation, V represents variance and B represents bias. It

was chosen because it accounts for bias as well as variance and all five estimators

are biased for ClP except in the degenerate circular case. With regard to the

second measure, it was chosen because it too accounts for bias as well as variance

hut in the sense of interval estimation vice point. These computations were based

on approximate distributions of CEP estimators and did not provide intervals with

specified confidence in all cases. Hence, the third measure was included to

estimate the true confidence.

The computation of these measures was straightforward but not simple due to

the complexity of the estimators. Recall that 1, 3 and S each involve radicals

of linear combinations of sample variances and estimators 2 and 4 involve linear

combinations of sample standard deviations. Hence, the sampling distributions

were approximated. Thie approximations were achieved by nmatching the variance of

estimators 3 aind 5 with the variance of the chi-square distribution and by match-

ing the variance of estimators 2 and 4 with the variance of the chi distribution.

Estimator I was sinply approximated by a chi-square with 2n degrees of freedom.

'11its distribution is exact only in the circular case and was included to show how

poorly it becomes when eccentricity of the distribution increases. The approxi-

mations are shown in Figure 6 and are discussed in more detail in the next

paragraph.
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Figure 6 provides a summary of approximate distributions for each CEPi

and defines several multiplicative factors, Ki, eccentricity c and degrees of

freedom v and v'. v* does not have a simple form and is described below.

Because estimators 3 and 5 are of the same general form, the distribution

of the squares of both was approximated by matching the variance of

2 2
v' (S + S )S.... 2- • •](13)

(x ÷

(a~ +0
x y

with 2 v', the variance of a chi-square with v' degrees of freedom. It was found
22

that v' n( where v - Expression (13) can be rewritten as
t c + 1

"2CEP.
1 where i =3 or 5 (14)

y '

to conform to the expressions in Figure 6.

Estimators 2 and 4, representing linear combinations of the standard

deviations, were approximated by matching the variapce of a chi with ,)* degrees

of freedom with the variance of

(v*). (sx + S (is)

0r + ax y

The variance of expression (15) was found to be

2 1+c2  (6

v* (1 - H 2(n)) 2 (16
(b-c)

and the variance of a chi with x* degrees of freedom is

v*(1 - 112 (v*))
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where H1(.

Upon equating the two, we find that v* satisfies

H2 l+c21
H(v,) _ I.(.2(n•))Ic I

(1+)

and can be obtained from a table of inverse solutions of the H function.

The approximate distributions allow one to derive approximate mean squared

errors for the CEPi estimators which are given in Figure 7. The Ki coefficients

are defined as before and Bias(CEPi) is defined as

E(CE.P i) True CEP i for i -- i, 2, ... , S.

In general, oy is a scale factor representing the maximum a value; however, in

the examples given here ay is always equal to 1. Note that TBECCEP2 ) and KE(CEP 4)

can be expressed in exact rather than approximate form.

Since a point estimate may not provide adequate information, approximate

950 confidence intervals were constructed for each estimator using the distributions

discussed above. The approximate lO0(l-a)% confidence limits for CEP are given

by

CEPi C1 P 1

L (Yi 01a2/v.i) ½ v~,//i

where CEPi is the ith estimator and vi equals the degrees of freedom associated

with CEPi. Expected confidence interval widths can then be computed and used as

measures of comparison between estimators. Clearly, if one could compute exact

95% confidence intervals, comparison of interval widths would be straightforward.

However, only approximate intervals can be obtained and the confidence associated

with each interval must be computed before a complete evaluation can be made.

315



Confidence was estimated using 10,000 Monte Carlo replicates for samples

of size 5, 10 and 20 and measuring the percentage of time the true CEP fell

within the interval. Confidence and expected confidence interval widths were

then jointly examined.

Results

The object of this study was to examine and evaluate the behavior of

several candidate CEP estimators over a wide range of conditions. Sample sizes

ranged from 5 to 400 and eccentricities ranged from c = 1, the circular case to

c = 20, a highly elliptical case. Extreme values of the sample size and

eccentricity may be infrequently encountered but were included for completeness.

Clearly, an estimator behaving poorly under circumstances unlikely to be observed

should not be disregarded as a viable candidate.

Prior to determining approxinwte distributions and mean squared error

(MSE) approximations for the estimators, a Monte Carlo simulation was developed

for computing the variance, bias, average squared error (ASE) and standard error

for each estimator at each of three sample sizes (n - 5, 10, 20). The simulated

ASE's were used as a check against MSE approximations which were subsequently

computed.

Upon comparing the simulated ASE's against results of the MSE approximations

for sample sizes 5, 10, and 20, it became evident that MSE approximations were

inadequate for estimators 3 and S. In fact, in the mid-range of the eccentricity,

c, the ?SE for 3 and 5 differed from the simulated values of ASE by as much as

three times the standard error. For this reason, the simulated ASE values are

presented in Figure 8 while the approximate NEE values, found suitable for

larger sample sizes, are shown in Figure 9.

Despite some fluctuation at c = .05, Figures 8 and 9 show estimators 2

through 5 producing fairly close results. As the sample size increased,
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estimator 4 exhibited the smallest mean squared error and appeared to be the

most satisfactory point estimator.

Figures 10 and 11 contain expected confidence interval width and confidence

interval confidence, respectively. If the computation of exact 95% confidence

intervals were possible, a straightforward selection of the estimator producing

the narrowest width could be made. However, the approximate confidence intervals

have varying levels of confidence associated with them, all of which under-

estimate or overestimate the desired 95% level. It appears that the wider lengths

are associated with higher confidence and the narrower widths with the lower

confidences so that a true comparison is not really possible. However, it is

evident that estimators 2 through 5 do not distinguish themselves as being far

superior or grossly inferior to one another. This is essentially the same result

obtained from the MSE comparisons.

In summary, unless c is very small, estimators 2 through 5 produce

reasonably close results. If confidence intervals are not desired, estimator 4

would be an acceptable choice. Otherwise, estimator 3 is recommended due to

ease of confidence interval computability.I
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roximate Distributions of Estimators

Soy 1 \2)
A22

v' CEP 3

SCEP 2

(5) CEP,

ya

K= 1.1774 K3 -- (2X , /v3

gl=.565 , g -. 612 when c Ž_ .25
g .667 , g2 =.206 when c < .25

Figure 6
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MEAN SQUARED ERRORS

A c2 +1ArMSE (CEP 2 K 2  +)[1-H' (2n)]+[Bias (CEP, 2
y 1 2

A 2 + 1
MSE (CEP3) 2 (i2 K2 (C2 + )[141n1+[IC P2

v' - nv J, 4 c j

(CA~ ~ ~ ~~4 02j2+g c C

MSE(CEP4J = y 1 2  )[1 H(n)] + [Bias CEP4 ]

MSE (C=EP5) f o2 K5 2 (p, + Bias 1CEP- I

Exact

Figure 7
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AVERAGE SQUARED ERROR

N=5

C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.
_ II -- -- I I -- I I

1.0 .068 .069 .070 .069 .069 .003
.75 .056 .053 .053 .053 .053 .002
.50 .056 .042 .041 .041 .042 .002
.35 .063 .037 .038 .038 .039 .002
.20 .073 .035 .039 .040 .041 .002
.05 .079 .041 .044 .043 .045 .002

N 10
C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.
- - "- I-- I

1.0 .034 .035 .035 .035 .035 .002
.75 .029 .027 .027 .027 .027 .002
.50 .031 .021 .021 .021 .021 .001
.35 .038 .019 .019 .019 .020 .001
.20 .048 .018 .020 .021 .021 .001
.05 .053 .022 .022 .022 .023 .001

N =20
C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.

1.0 .017 .017 .017 .017 .017 .001.75 .014 .013 .013 .013 .u13 .001

.50 .017 .011 .010 .010 .010 .001

.35 .024 .010 .009 .009 .010 .001
.20 .034 .009 .010 .011 .011 .001
.05 .039 .013 .011 .011 .012 .001

Figure 8
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MEAN SQUARED ERROR

N - 50
C MSE 1 MSE 2 MSE 3 MSE 4 MSE 5

1.0 .0069 .0069 .0069 .0069 .0070

.75 .0055 .0054 .0057 ,0054 .0057

.50 .0077 .0044 .0051 .0042 .0052

.35 .0143 .0041 .0049 .0037 .0050

.20 .0235 .0036 .0047 .0036 .0050
.05 .0275 .0072 .0045 .0042 .0048

N - 100
C MSE 1 MSE 2 MSE 3 MSE 4 MSE 5

1.0 .0035 .0035 .0035 .0035 .0035

.75 .0029 .0027 .0028 .0027 .0029

.50 .0057 .0023 .0026 .0021 .0026

.35 0126 .0022 .0024 .0019 .0026

.20 .0220 .0018 .0023 .0018 .0026

.05 .0261 .0053 .0023 .0021 .0025

N =400
C MSE 1 MSE 2 MSE 3 MSE 4 MSE 5

1.0 .0009 .0009 .0009 .0009 .0009
.75 .0009 .0007 .0007 .0007 .0007
.50 .0042 .0007 .0007 .0005 .0007

.35 .0113 .0008 .0006 .0005 .0007

.20 .0209 .0005 .0006 .0005 .0008

.05 .0251 .0039 .0006 .0005 .0007

Figure 9
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CONFIDENCE INTERVAL LENGTHS

C CL 1 CL 2 CL 3 CL 4 CL 5
M .

1.0 1.213 1.160 1.305 1.145 1.317
.75 1.071 1.028 1.175 1.014 1,186
.50 .950 .923 1.118 .918 1.131
.35 .897 .889 1.129 .917 1.144
.20 .856 .876 1.149 .985 1.168
.05 .841 .912 1.176 1.054 1.196

N = 10
C CL I CL 2 CL 3 CL 4 CL 5

1.0 .792 .776 .817 .768 .823
.75 .698 .685 .735 .676 .741
.50 .622 .614 .697 .601 .705
.35 .587 .586 .693 .586 .702
.20 .564 .573 .694 .636 .706
.05 .553 .579 .695 .662 .707

N 20

C CLI CL 2 CL 3 CL4 CLI5

1.0 .537 .533 .545 .531 .549
.75 .475 .472 .492 .467 .496
.50 .423 .421 .465 .411 .470
.35 .400 .401 .460 .393 .466
.20 .384 .388 .455 .429 .462
.05 .378 .387 .453 .441 .461

Figure 10
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SIMULATED CONFIDENCE LEVELS
N 5

C PROB 1 PROB 2 PROB 3 PROB 4 PROB 5

1.0 .950 .947 .963 .946 .963
.75 .941 .947 .965 .945 .965
.50 .894 .941 .968 .944 .967
.35 .830 .937 .963 .939 .961
.20 .753 .932 .952 .923 .950
.05 .714 .930 .950 .936 .948

N 10
C PROB 1 PROB 2 PROB 3 PROB 4 PROB 5

1.0 .947 .945 .955 .944 .955
.75 .935 .944 .958 .943 .959
.50 .876 .941 .967 .943 .966
.35 .789 .939 .967 .941 .965
.20 .689 .939 .959 .931 .955
.05 .640 .931 .951 .943 .948

N 20
C PROB 1 PROB 2 PROB 3 PROB 4 PROB 5

1.0 .952 .952 .956 .951 .956
.75 .938 .951 .960 .951 .960
.50 .858 .945 .970 .948 .969
.35 .724 .942 .970 .947 .968
.20 .567 .946 .961 .937 .955
.05 .506 .912 .950 .946 .946

Figure 11
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